ASYMMETRIC HYDROGENATION OF N-(α -KETOACYL)- α -AMINO ESTERS

Kazuhide TANI,* Eiji TANIGAWA, Yoshitaka TATSUNO, and Sei OTSUKA Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560

Asymmetric hydrogenation of N-(α -ketoacyl)- α -amino esters with Cydiop-rhodium(I) complex catalysts produced optically active N-(α -hydroxyacyl)- α -amino esters in high optical yields, which may be useful as building blocks of depsipeptides. Almost no influence of the chiral center of substrate was observed.

Asymmetric reduction of N-(α -ketoacyl)- α -amino esters (1) giving N-(α -hydroxyacyl)- α -amino esters (2) seems to be a useful reaction to obtain optically active depsipeptide building blocks. It is reported that the asymmetric hydrogenation of 1 using diop-rhodium(I) complex catalysts needed high pressure of H₂ (50 atm) and resulted only in simple asymmetric induction due to the chiral center of substrate. Fairly high optical induction in the asymmetric reduction of 1 has only been achieved by asymmetric hydrosilation. Here we want to describe effective asymmetric hydrogenation of the ketoamides 1 using chiral peralkyldiphosphine-rhodium(I) catalysts (Eq. 1), which show a striking difference from conventional chiral diphosphine-rhodium(I) catalysts in the asymmetric hydrogenation.

Previously we have reported that peralkyldiphosphine-rhodium(I) complexes show high catalytic activity for hydrogenation of ketones and aldehydes. Subsequently we have prepared optically active peralkyldiphosphines, alkyldiop, Rdiop [2,3-0-isopropylidene-2,3-dihydroxy-1,4-bis(dialkylphosphino)butane], and pyrolidine-containing peralkyldiphosphines a effective chiral auxiliary ligands for asymmetric hydrogenation of prochiral ketones, especially that of α -dicarbonyl compounds. Among these chiral peralkyldiphosphine ligands, (-)- or (+)-Cydiop

PCy₂
PCy₂
PCy₂
(-)-Cydiop

$$R^{1}COCCONHCHCO_{2}Me$$

$$(S)$$

$$R^{1}COCCONHCHCO_{2}Me$$

$$R^{2}$$

$$H_{2}(1 atm), 20°C$$

$$R^{1}CHCONHCHCO_{2}Me$$

$$R^{2}$$

$$R^{1}CHCONHCHCO_{2}Me$$

$$R^{2}$$

$$R^{1}CHCONHCHCO_{2}Me$$

$$R^{2}$$

$$R^{1}CHCONHCHCO_{2}Me$$

$$R^{2}$$

is effective, in particular, for asymmetric hydrogenation of a-ketoamides. For example, with a neutral complex, (-)-Cydiop-Rh $^{\rm N}$, PhCOCONHCH $_2$ Ph has been hydrogenated smoothly to give (+)-PhCH(OH)CONHCH $_2$ Ph in 78%ee. $^{5)}$ The same catalyst system was found to be also effective for the asymmetric hydrogenation of 1. Some representative results are summarized in Table 1. The present results form a sharp contrast to those of the hydrogenation with diop-rhodium(I) complex catalyst reported by Ojima et al. $^{1)}$ The hydrogenation proceeded smoothly even under an atmospheric pressure of hydrogen. For the asymmetric hydrogenation of 1, the neutral complex catalysts, Cy-diop-Rh $^{\rm N}$, were much more effective compared with the cationic complex catalyst, Cydiop-Rh $^{\rm h}$. The highest optical induction of 72% has been attained with Cydiop-Rh $^{\rm N}$ complex catalyst for hydrogenation of 1a and almost no double asymmetric induction due to the chiral center of substrate was observed, because (+)- and (-)-Cydiop complex gave almost the same optical induction with opposite directions.

Substrate	Catalyst ^{b)}	Conversion/%	$(\underline{R},\underline{S})/(\underline{S},\underline{S})^{c}$	%de
la	(-)-Cydiop-Rh ^N	100	14/86	72
	(+)-Cydiop-Rh ^N	100	84/16	68
	(-)-Cydiop-Rh ⁺	78	41/59	18
	dipb-Rh ⁺	60	48/52	4
1Ъ	(-)-Cydiop-Rh ^N	100	17/83	66
	(+)-Cydiop-Rh ^N	100	82/18	64
	dipb-Rh ⁺	57	53/47	6
lc	(-)-Cydiop-Rh ^N	80	27/73	46
	(+)-Cydiop-Rh ^N	72	74/26	48
	dipb-Rh ⁺	33	53/47	6

Table 1. Asymmetric hydrogenation of N-(α -ketoacy1)- α -amino esters^a)

a) Reactions were run with [Catalyst] = 2.5 mM, [Substrate] = 0.5 M under 1 atm of $\rm H_2$ at 25 °C for 20 h in MeOH (for cationic catalysts) or in THF (for neutral catalysts). b) diphosphine-Rh^N = diphosphine + $1/2[Rh(C_2H_4)_2C1]_2$; diphosphine-Rh⁺ = [Rh(diphosphine)(nbd)]ClO₄ (nbd = norbornadiene); dipb = $^{\rm i}$ Pr $_2$ P(CH $_2$) $_4$ PiPr $_2$. c) determined by $^{\rm 19}$ F NMR of the trifluoroacetate (in case of 2b) or by HPLC (in case of 2a, 2c).

References

- 1) I. Ojima, T. Tanaka, and T. Kogure, Chem. Lett., <u>1981</u>, 823.
- 2) K. Tani, K. Suwa, E. Tanigawa, T. Yoshida, T. Okano, and S. Otsuka, Chem. Lett., <u>1982</u>, 261; K. Tani, E. Tanigawa, Y. Tatsuno, and S. Otsuka, J. Organomet. Chem., <u>279</u>, 87 (1985).
- 3) K. Tani, K. Suwa, T. Yamagata, and S. Otsuka, Chem. Lett., 1982, 265.
- 4) K. Tani, T. Ise, Y. Tatsuno, and T. Saito, J. Chem. Soc., Chem. Commun., 1984, 1641.
- 5) K. Tani, K. Suwa, and S. Otsuka, ACS Symposium Series, <u>185</u>, 283 (1982); K. Yamamoto and S.-U.-Rehman, Chem. Lett., <u>1984</u>, 1603.

(Received February 13, 1986)